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Abstract
Conservation tillage is a primary tenet of conservation agriculture aimed at restoring andmaintaining
soil health for long-term crop productivity. Because soil degradation typically operates on century
timescales, farmer adoption is influenced by near-term yield impacts and profitability. Although
numerous localizedfield trials have examined the yield impacts of conservation tillage, their results are
mixed and often unrepresentative of real-world conditions. Here, we applied amachine-learning
causal inference approach to satellite-derived datasets of tillage practices and crop yields spanning the
USCorn Belt from2005 to 2017 to assess on-the-ground yield impacts atfield-level resolution across
thousands offields.We found an average 3.3% and 0.74%yield increase formaize and soybeans,
respectively, forfields with long-term conservation tillage. This effect was diminished infields that
only recently converted to conservation tillage.We also found significant variability in these effects,
andwe identified soil andweather characteristics thatmediate the direction andmagnitude of yield
responses. This work supports soil conservation practices by demonstrating they can be usedwith
minimal and typically positive yield impacts.

1. Introduction

Tillage has been a component of global agricultural
systems for millennia. Turning over the soil helps
control weeds, break up compaction, and mix nutri-
ents [1]. This repeated disturbance, however, produces
unnaturally high erosion rates in agricultural fields [2],
harms soil biota [3], and damages soil structure [4].
Combined with other soil pressures, this has resulted
in widespread degradation [5] and cropland abandon-
ment at rates exceeding 10 million hectares per year
over the past century [6–8]. These losses pose a serious
challenge to meeting current and future global food
demand.

To combat these negative effects, conservation til-
lage is promoted to restore andmaintain soil health for
long-term crop productivity. It is characterized by the
retention of at least 30% of crop residues on the soil
surface and often achieved through low-impact tillage
techniques such as no-till or strip till [9]. These

residues and reduced soil disturbance help prevent
erosion [2], improve water retention and drainage
[10, 11], and foster the quantity and quality of organic
matter [4, 12, 13]. After emerging in response to the
1930s Dust Bowl in the United States (US), large-scale
adoption began in the 1980s and 1990s following the
development of modern herbicides and specialized
technology [1, 14, 15]. Today, conservation tillage is
practiced on over 150 million ha worldwide, with
adoption concentrated in South America, Oceania,
andNorthAmerica [14–16].

Because soil degradation typically operates on cen-
tury timescales, near-term yield impacts and profit-
ability are key factors for farmer adoption [17, 18].
Numerous studies have examined the yield effects of
conservation tillage, and their results are mixed. A
recent global meta-analysis concluded that no-till
reduced yields by 5.1% in aggregate, although sub-
stantial variability existed among crops and biomes
[16]. While maize yields remained lower regardless of
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duration, all other crop categories did achieve similar
(but not higher) yields to conventional tillage after 5+
years, suggesting an initial yield penalty due to an
adjustment period [16]. In contrast, other studies have
found no or even positive yield impacts for maize
[19–23] along with variable effects by soils, weather,
and/or rotation practices [16, 19, 22–24]. Soybean
yields are typically found to be indistinguishable
among tillage practices [16, 19–21, 25], with some
exceptions [26–28].

Ultimately, a paucity of real-world conditions
across biophysical gradients in the literature limits
insights meaningful for practitioners. Many studies
involved small-scale research plots on level ground
with good soils, prohibiting the use of field-scale
equipment, inclusion of sloped fields, and a range of
soil quality, all cases that may favor conservation til-
lage [16, 29]. Although research plots enable rando-
mized trials to isolate tillage effects, identical regimes
for othermanagement factors are not representative of
on-farm operations adapted to tillage type [13, 30, 31].
A rare comparison of production-scale systems found
no yield differences for bothmaize and soybeans in the
upper midwestern US, but it was limited to two loca-
tions [29]. Combined with anecdotes of adoption rates
exceeding expectations from economic studies [32],
there are indications that production scale effects may
differ from research plot studies.

Crop information derived from satellite imagery
provides a complementary approach to randomized
trials that can capture on-farm characteristics at sub-
field-level resolution across regional scales at low
costs. With recent improvements in cloud-computing
resources and imagery access, maps of crop-specific
yields and tillage practices can be generated annually
over decades, particularly in large commercial systems
[33–35]. These advances allow a dramatic increase in
sample size and regional coverage that ensures a wide
representation of biophysical conditions, weather, and
on-farm management practices. In addition, ongoing
innovations in causal inference methodologies
increasingly enable the identification of causal rela-
tionships from observational data, including methods
to account for sampling biases and confoundedness.

Here, we use recently published satellite estimates
of tillage practices [35] and crop yields [34, 36] extrac-
ted from 30 m Landsat imagery to examine the yield
effects of conservation tillage for both maize and soy-
beans in the US Corn Belt from 2005 to 2017. We
leverage causal forests, an emerging forest-based
machine learning approach designed to estimate treat-
ment effects in observational data [37–39], to quantify
yield impacts of conservation tillage across soil and
weather conditions. Because we lack data on manage-
ment practices accompanying tillage type, we ask the
question, ‘What are the yield impacts of the full man-
agement regime for conservation tillage compared to
the regime in conventionally tilled fields?’ In this way,
we address the knowledge gap concerning on-farm

yield impacts from conservation tillage systems to
further inform evidence-based management by
practitioners.

2.Methods

2.1. Study area
The US Corn Belt encompasses approximately 1
million km2 across 12 states in the midwestern United
States [40]. It is characterized by high-yielding commer-
cial agriculture predominantly in maize-soy rotation,
contributing over one third of global production for
these crops [41]. Here, we focused on a 9-state region
formaize (figure 1(a)) and3 states (Indiana, Illinois, and
Iowa) for soybeans due to yieldmap availability for each
crop (section 2.2). This region has primarily hot-
summer to warm-summer humid continental climates
(Koeppengeiger classes Dfa and Dfb) [42], and most
fields do not receive supplemental irrigation. According
to the US Agricultural Census [43], conservation tillage
covered 50% (∼412 000 km2) of total cropland area in
the 9-state region in 2017, a 17% increase since the
previous 2012 Census. Cover cropping, a complemen-
tary practice promoted along with reduced tillage and
crop rotation as the three pillars of ‘conservation
agriculture,’ is not nearly as prevalent, covering only
3.4%of total cropland area in the 2017Census. Still, this
represents a 75% increase since 2012 [43]. Increasing
adoption of these soil conservation practices has
reduced average erosion rates in the United States
∼35% between 1982 and 2007, but rates remain above
natural soil production [44].

2.2. Satellite-derived data sources
We used a previously published gridded dataset of
annual tillage practices for the north central US from
2005 to 2016 by Azzari et al [35] to identify locations
practicing conservation or conventional tillage at 30 m
resolution (figure 1(a)). Briefly, these maps were
generated by applying a random forest classifier
trained on ground truth data from 5866 soybean fields
to Landsat satellite imagery. Because the ground truth
data was limited to soybean fields, the classification
was applied only to pixels identified as soybeans based
on annual crop type maps from the US National
Agricultural Statistics Service (NASS) [45]. These
soybean-based tillage maps achieve fairly complete
coverage of the study region every two years due to
dominant maize-soybean rotations. Here, we assume
that the same tillage method was practiced during
subsequent maize years. It is likely this assumption is
not universally valid, since partial adoption charac-
terizes over half of conservation tillage practitioners,
with approximately 11% of farmers in this region
adopting tillage practices by crop type [46]. Similarly
challenging for inference, this product has an overall
accuracy of 79%, with 84% and 72% of validation
points correctly classified for conservation and
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conventional tillage, respectively. We mitigate these
potential sources of error through additional data
filtering criteria (section 2.3) and note that, given our
findings (section 3.2), the possible inclusion of a small
percentage of misclassified maize fields implies that
our estimates of yield differences between conserva-
tion and conventional tillage systems are likely
conservative.

Previously published yield maps for maize and
soybean were produced using the Scalable Crop Yield
Mapper (SCYM) [33], a satellite-based approach with
a demonstrated ability to detect impacts from man-
agement practices [47, 48]. This approach has two
main steps. First, statistical models predicting yields
from crop phenology and climate covariates are
derived from regionally parameterized crop models.

Second, these statistical models are applied to satellite
imagery and gridded climate datasets based on crop
type maps, generating a yield estimate for each pixel.
Maize yieldmaps were produced with Landsat satellite
imagery for nine Corn Belt states from 2008 to 2015 by
Jin et al [34]. We used the algorithm described therein
to extend maize yield maps through 2017, with overall
county-level agreement at r2=0.78 (RMSE=1.2 t/
ha) compared with NASS statistics. Soybean yield
maps were produced by Lobell and Azzari [36] for the
states of Indiana, Illinois, and Iowa from 2000 to 2015
with similar agreement to county yield statistics
(r2=0.74, RMSE=0.16 t/ha). Figure S1 (figure S1 is
available online at stacks.iop.org/ERL/14/124038/
mmedia) showsmean yields across space for each crop
during the study period.

Figure 1. Satellite-derived tillage practices in the study area and environmental factors associatedwith long-term conservation tillage.
(a) Study area inset andmap of tillage frequency between 2005 and 2016. Tillage frequencywas derived from 30 mLandsat data and is
reproduced fromAzzari et al 2019 [35]. Zoomed inset demonstrates variability on the landscape even in areas with a dominate tillage
type. (b)Conditional probabilities of conservation tillage by environmental covariables from treatment propensitymodel. Estimates
from individualfield observationswere smoothedwith aGAM (blue line), and the density of field observations is indicatedwith blue
shading. AWC=availablewater content; VPD=vapor pressure deficit.
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2.3. Field sample generation and covariate sampling
As noted above, the tillage map classification performs
moderately well but contains some errors that could
add noise to our analyses. To guard against spurious
classifications, we restricted the tillage maps in the
following ways: (1) we required pixels to have 6
observations during the 12 year dataset, with at least
one observation before 2008 and after 2014, to ensure
a dense time series of observations spanning the data
record; (2) from these, we identified long-term tillage
management regimes based on pixels with constant
tillage status in all observations, indicating at least a
decade of conservation practices and likely increasing
the probability of sustained adoption in maize years;
(3) we identified ‘single-switch’ pixels which switched
tillage status one time between 2009 and 2014 to
examine the impact of new tillage regimes; and (4)
pixels needed to be part of a coherent pixel group of
the same tillage classification and, for single-switch
pixels, the same year (see Text S1). All remaining
sampling and analyses occurred at this ‘field entity’
level. We then used a data-driven delineation of
climate-soil domains [26] to sample up to 500 fields
per tillage status within each domain for each year,
resulting in 144 127 and 117 757 maize field-years and
92 037 and 100 222 soybean fields-years for conven-
tional and conservation tillage, respectively.

For each field, we extracted the median yield from
SCYM maps. We removed fields with outlier yield
values below the 0.01% and above the 99.99% from
both maize and soybean datasets. We then extracted
median field values for a suite of environmental cov-
ariables defining both static field properties and
annually varying weather and soil moisture. For static
field properties, we obtained 1981–2010 climate nor-
mals from PRISM [49, 50], calculated field slope from
the USGS National Elevation Dataset [51], and extrac-
ted soil properties for the top one meter from the
SSURGO soil database [52]. Annual monthly and sea-
sonal weather summaries were extracted from GRID-
MET ∼4 km meteorological dataset [53]. Annual
monthlymodeled soil moisture and climate water def-
icit were extracted from the TerraClimate ∼4 km cli-
matic water balance dataset [54]. Table S1 provides a
list of all variables considered and their data sources.
All data were accessed and processed in Google Earth
Engine [55] with the exception of the soil data, which
we acquired through SSURGO.

2.4. Analysis withmachine-learning based causal
inference
To quantify conservation tillage’s impact on crop
yields, we used causal forests, an recent adaptation of
the classic random forest algorithm [56] for statistical
inference on causal effects, particularly when hetero-
geneity is present [38, 39]. Broadly, causal forests act as
an adaptive kernel method [39]; in our application, it
uses each field’s closest neighbors in covariate space to

generate a counterfactual yield estimate under the
alternative tillage practice. Causal forests generate
mathematically valid confidence intervals while lever-
aging the ability of random forests to handle many
covariates and nonlinear interactions without over-
fitting or requiring explicit model specification
[38, 39, 57, 58]. Recent applications demonstrate
better performance than conventional econometric
methods for detecting and quantifying heterogenous
treatment effects [59, 60].

Causal forests are also designed for observational
datasets. Because treatments are not randomly
assigned, an observational analysis could be con-
founded if fields that have higher (or lower) yields also
tend to adopt conservation tillage at higher rates. Cau-
sal forests addresses these biases with a ‘doubly robust’
treatment estimation method (augmented inverse-
propensity weighted estimation [61]) which combines
both treatment propensity weighting [62] and regres-
sion adjustment to reduce sensitivity to misspecifica-
tion in eithermodel [39, 63].

2.4.1. Analysis of long-term conservation tillage
Here, we used the ‘grf’ package [64] in R [65] to
implement causal forests separately for maize and
soybean fields with long-term tillage practices
(section 2.3).We designated ‘conservation tillage’ as the
treatment variable, ‘conventional tillage’ as the control,
and crop yield as the outcome. First, we used the full set
of static covariates describingfield slope, soil properties,
and climate normals (tables 1 and 2) to estimate
treatment propensity using 2000 trees and default
function settings. The propensity model performed
well, indicated by close agreement between propensity
scores versus treatment status (figure S3). To examine
biophysical factors typically associated with conserva-
tion tillage, we used the larger 9-state maize domain.
We inferred variable importance from the number of
times each covariate was used to split the individual
trees, although it should be noted that correlations
among variables can skew thesemetrics [66].

Tomeet the assumption of overlap within the cau-
sal forests framework, which requires that treatment
and control samples occupy similar covariate space to
provide appropriate neighbors for comparison, we
then removed samples with propensity scores below
0.05 or above 0.95. This produced a final dataset of
70 404 and 88 220 (maize) and 51 215 and 68 334 (soy-
beans) unique field-year observations for conservation
and conventional tillage, respectively. Figures S4 and
S5 provide the spatial distribution of field observations
before and after this propensity filter. We then speci-
fied the regression adjustment portion of the doubly
robust estimator (see Text S2 and figure S2). Next, we
used all covariables selected for this regression model
and the most important variables in the propensity
model (tables 1 and 2) to estimate the treatment effects
of conservation tillage using the ‘causal_forest’ func-
tion in grf with 2000 trees and default parameters.
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To investigate heterogeneity in treatment effects,
we first tested for significant heterogeneity using
the ‘test_calibration’ function in grf. We then

summarized covariate values for subpopulations of
observations based on their predicted treatment
effects. Figures 2(a) and 3(a) show the distribution of

Table 1.Variables used in causal forests analysis:Maize. Variables are ordered by the proportion of splits on each variablewithin the
ensemble of decision trees thatmake up each forest (high to low), which provides a rough approximation of variable importance.
VPD=vapor pressure deficit; AWC=available water content. Table S1 provides data source information.

Treatment propensity (30 yr climate normals) Regression adustment/Expected yield outcome Treatment effect

Slope Julymeanmax temp Slope

May precip Maymeanmax temp Soil clay content

Aprilmean temp Year Soil sand content

April precip July climate water deficit June precip

July VPD Solar radiation (June–August) April soilmoisture

June precip Augustmeanmax temp Maymeanmin temp

July precip Maymeanmin temp Early season precip

JuneVPD June precip August soilmoisture

Soil sand content Early season precip Soil AWC

Junemean temp August soilmoisture Junemeanmin temp

Soil silt content Junemeanmin temp Maymeanmax temp

Soil AWC GrowingDegreeDays June climate water deficit

Maymean temp May precip July VPD

Augustmean temp July precip Julymeanmax temp

Julymean temp Augustmeanmin temp May precip

Soil clay content Soil clay content GrowingDegreeDays

Soil ksat Soil AWC April precip

Soil sand content Solar radiation (June–August)
Augustmeanmin temp

Augustmeanmax temp

July precip

Aprilmean temperature

July climatewater deficit

Year

Table 2.Variables used in causal forests analysis: Soybeans. Variables are ordered by the proportion of splits on each variable within the
ensemble of decision trees thatmake up each forest (high to low), which provides a rough approximation of variable importance.
VPD=vapor pressure deficit; AWC=available water content. Table S1 provides data source information.

Treatment propensity (30 yr climate normals) Regression adjustment/Expected yield outcome Treatment effect

Slope Aridity (June–August) May soilmoisture

May precip Previously Soy April soilmoisture

Aprilmean temp July climatewater deficit Slope

Soil silt content Solar radiation (June–August) July soilmoisture

JuneVPD June precip Soil silt content

April precip GrowingDegreeDays July precip

Soil clay content May soilmoistre Aridity (June–August)
July precip June climatewater deficit Soil clay content

June precip May precip Soil sand content

Maymean temp Jan–April precipitation June precip

Augustmean temp July precip Augustmeanmin temp

Julymean temp July soilmoisture GrowingDegreeDays

Soil AWC Soil sand content Soil AWC

Junemean temp April precip July VPD

JulyVPD June–August precip Early season precip

Soil sand content Soil clay content Solar radiation (June–August)
Soil ksat Augustmeanmin temp Aprilmean temp

Year May precip

Growing season precip

Previously Soy

April precip

Junemeanmin temp

Year

June climate water deficit

July climatewater deficit

5

Environ. Res. Lett. 14 (2019) 124038



field samples among these subpopulation bins. We
then identified covariates with stronger influences on
the yield outcomes of conservation tillage based on
covariate distributions within these subpopulations
and informed by variable importance rankings for the
causal forests (tables 1 and 2).

2.4.2. Analysis of fields following initial tillage conversion
To assess the initial yield impacts from switching
tillage practices, we applied the same causal forests
approach to the fields we identified as ‘single-switch’
fields (section 2.3). We conducted one cross-sectional
analysis for the final year of yield data for each crop
(2017 for maize and 2015 for soybeans) to evaluate the
partial treatment effect of each additional year of
conservation tillage. Here, the treatment variable was
the number of years since adoption, with zero indicat-
ing the control case of continued conventional tillage.
We then conducted the same analysis on fields that
switched from conservation tillage to conventional
tillage. We note that the location of fields switching to
and from conservation tillage are not similarly dis-
tributed in space (see figures S6 and S7), so the spatial

support for these analyses is not directly analogous to
one another.

2.4.3. Confounders and omitted variables
Socioeconomic factors for which we lacked data can
influence adoption, and, if also associated with higher
yields, they could cause omitted variable bias in our
propensity score and treatment effect estimation. For
example, farm size, education, high sales farms, and
regulations for highly erodible lands have been posi-
tively correlated to conservation tillage adoption
[18, 32, 67–70]. Negative correlations exist for farmer
age, management by renters, and distance from
research stations [32, 68, 69]. Because lower intensity
tillage reduces fuel requirements, high fuel costs can
also promote adoption [70]. Still, it remains difficult to
predict adoption due to a lack of universal features
[71, 72], suggesting there is variability in these effects.
Nevertheless, the propensity model we developed
based upon biophysical factors captures the probabil-
ity of adoption well (figure S3), and causal forests’s
doubly robust estimator buffers somemisspecification
in the propensity score model (section 2.4). Future

Figure 2.Distribution ofmaize yield impacts from conservation tillage from2008 to 2017. (a)Mean conditional treatment effect for
allfield-year observations on a regular 5 km2 grid. The distribution of treatment effects across all 158, 624 field observations is
provided in the histogram, with indicators for subpopulation bins used to analyze heterogenous treatment effects across covariates.
(b)Covariate distributions (median+interquartile range) by treatment effect subpopulation bins for variables influencing
heterogenous impacts on the landscape.
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large-scale randomized experiments or quasi-natural
experiments able to collect data on these attributes
would be a useful robustness check for the analysis.

3. Results and discussion

3.1. Biophysical factors associatedwith
conservation tillage
Overall, we found that long-term conservation tillage
occurred across a wide range of environmental condi-
tions, as indicated by treatment probabilities above
25% across most covariable values (figure 1(b)). This is
consistent with past difficulties identifying universal
variables to explain adoption [71, 72]. Field slope
ranked highest in importance (table 1), likely explained
by greater benefits for erosion relative to flatter fields
and policies targeting highly erodible areas [18]. Higher
early season temperature, early season precipitation,
and July vapor pressure deficits also increased prob-
ability of adoption (figure 1(b), table 1), consistent with
findings that conservation tillage is often more promi-
nent in warmer, arid conditions [16, 17, 73] and can

enhance water infiltration rates [1]. Both soil silt and
available water content were positively related to
conservation tillage while sand content was negatively
correlated (figure 1(b)), although soil variables did not
rankhigh in variable importance.

3.2. Yield effects of long-term conservation tillage
For maize, we found an overall 3.3% yield benefit from
conservation tillage (average treatment effect; 95%
Confidence Interval, CI=[3.1%, 3.4%]) across fields
with long-term tillage practices from2008 to 2017. This
translated to an average yield boost of 0.36 t/ha
(CI=[0.34, 0.37]). For soybeans, we found a smaller
yield benefit of 0.74% (CI=0.53%, 0.95%) or 0.024 t/
ha (CI=0.017, 0.031) from 2005 to 2015 within
Indiana, Illinois, and Iowa. Generally, these effects are
smaller than typical year-to-year yield variability in this
region (figure S2) and similar in magnitude to previous
plot level work [20, 21, 27, 74, 75]. We did, however,
findmore evidence for positive yield impacts across the
region than the majority of existing literature [16]. This
may reflect ongoing technology improvements for

Figure 3.Distribution of soybean yield impacts from conservation tillage from2005 to 2015. (a)Mean conditional treatment effect for
allfield-year observations on a regular 5 km2 grid. The distribution of treatment effects across all 119, 549 field observations is
provided in the histogram, with indicators for subpopulation bins used to analyze heterogenous treatment effects across covariates.
(b)Covariate distributions (median+interquartile range) by treatment effect subpopulation bins for variables influencing
heterogenous impacts on the landscape. AWC=available water content.
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conservation tillage implementation [29] or additional
insight afforded through our methodology, which
allows the inclusion of a large range of covariates and
leverages thousandsoffields across awide region.

Tests for treatment effect heterogeneity were sig-
nificant for both maize (p<0.0001) and soybeans
(p<0.0001), indicating treatment effects are moder-
ated by the weather, soil, and slope covariates used. For
maize, the 5th–95th percentiles of these conditional
average treatment effects (CATEs) ranged from −1.3%
to8.1%; for soybeans, they ranged from−4.7% to5.8%.

To understand how this heterogeneity manifested
across the Corn Belt, we mapped the mean CATE for
all field-years on a 5 km2 regular grid by crop type
(figures 2(a) and 3(a)). For both maize and soybeans,
negative impacts from conservation tillage were most
pronounced in northwestern Iowa and from southeast
Iowa into western Illinois. Conservation tillage largely
improved yields from eastern Illinois through Indiana.
For maize, Ohio, South Dakota, and the outer regions
of the Corn Belt displayed strong positive effects.
Notably, we found that conservation tillage had a lar-
gely positive effect on maize yields in the northern
Corn Belt, where it has historically been more limited
in practice (figure 1(a)). While it is possible this effect
is driven by early adopters inordinately adept at mana-
ging their fields, recent studies in Minnesota [29, 76],
New York [12], and Canada [32] provide increasing
evidence for conservation tillage interest and feasi-
bility in thesemore northerly latitudes.

3.3. Soils and annual weathermoderate yield impact
To understand the underlying biophysical features
driving these patterns, we explored conditional treat-
ment effects by field attributes for both maize
(figure 2(b)) and soybeans (figure 3(b)). Overall, the
soil water balance and seasonal temperatures seem to
drive much of the heterogeneity observed. For exam-
ple,maize and soybean yield benefits were greater than
average when baseline late-season (July–August) soil
moisture was low, suggesting higher differential suc-
cess in arid conditions likely due to improved soil
water holding capacity. Similarly, soybean field-years
with positive yield effects tended to have lower baseline
soil available water content from static soil maps,
indicating potential improvement in water capacities
on thesefields from conservation tillage.

In addition to these arid conditions generally
thought to benefit from conservation tillage [16], we
also found evidence that conservation tillage can
improve yields under wet conditions. Soybean field-
years with positive yield impacts had higher median
July precipitation (figure 3(b)). Similarly, maize field-
years with the greatest treatment effects experienced
higher median early season precipitation (figure 2(b)).
Together, this suggests improved water infiltration on
fields under conservation tillage.

On the other hand,we also found evidence that very
wet early season soils (April–May) can reduce conserva-
tion tillage benefits in both crops. Conventional tillage
helps dry water-logged soils [77], often enabling earlier
planting dates and thus better yields. Interestingly, con-
servation tillage performedworse formaize whenmean
May minimum temperature was higher (figure 2(b)).
Although higher temperatures should help dry soils
near planting, higher May temperatures could also
facilitate weed growth that can compete with maize
emergence or, combined with residue cover, increase
disease pressure by fostering disease organisms.

Although higher field slopes increased the like-
lihood of conservation tillage (figure 1(b)), yields were
not better on higher slopes for either crop (figures 2(b),
3(b)), possibly because impacts from soil erosion oper-
ate on centennial time scales not yet manifested here.
However, we were unable to compare fields with slopes
higher than 3 degrees due to lack of overlap between til-
lage types, since high sloped fields had high prob-
abilities of treatment (figures 1(b), section2.4.1).

3.4. Initial yield impacts from switching tillage
practices
There is strong evidence that any benefits from
conservation tillage can be absent upon initial imple-
mentation and accrue over time as soil health and
management improves [16]. For maize and soybeans,
we found an overall positive yield effect of 0.29% and
0.033%, respectively, for each additional year under
conservation tillage when considering fields between 1
and 8 years since adoption. Although still positive,
these effects are an order of magnitude smaller than
fields with long-term conservation tillage (figure 4).

Figure 4. Summary of the average yield impacts of conserva-
tion tillage by implementation duration.Dark bars represent
long-term tillagemanagement infields that had consistent
tillage classification from2005 to 2016. Light bars represent
fieldswhich switched to conservation tillage during this study
period, with years since conversion ranging from1 to 8. Error
bars denote 95% confidence intervals.
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These numbers imply that, on average, the full yield
benefit of long-term conservation tillage is achieved
after 11 years for maize and 22 years for soybeans.
Interestingly, we found similar (maize) or greater
(soybeans) yield improvements when analyzing fields
that switched from conservation tillage to conven-
tional tillage (maize: 0.26%; soy: 0.61%). This suggests
that management challenges persist for conservation
tillage, likely related to weed control or timing of
planting. Indeed, a previous analysis found that in the
US circa 2012, less than half of farmers reporting ‘no-
till’ methods practiced them continuously during the
previous four years [18]. Because soil benefits are
greatest under sustained conservation tillage, there is
still a need for improved understanding of these
management decisions and challenges.

4. Conclusions

By applying causal inference methods to Earth obser-
vation datasets, we found that long-term conservation
tillage typically has a small positive yield effect for both
maize and soybeans across tens of thousands of fields
in the US Corn Belt. This effect is diminished on fields
that recently switched from conventional to conserva-
tion tillage, supporting the notion that it can take
several years to achieve yield benefits due to a time lag
in soil response and the learning curve for effective
management [16]. Compared with background yield
variability from annual weather patterns, cultivars,
and management practices in this system, these yield
effects are small and would be difficult to detect with
localized experiments on small sample sizes. Our
satellite-based approach allows us to pool the experi-
ence of over 150 000 field observations, improving the
ability to detect this signal amid other variation.

Given these rare or minor yield penalties, our results
support an emerging consensus that tillage adoption
decisions can focus on factors other than yields in this
region [20, 75]. In addition to positive effects on soil
quality, conservation tillage is typically associated with
lower production costs due to reduced machinery, fuel,
and labor requirements [1, 24, 78]. Conservation tillage
can also reduce supplemental water requirements [27]
and field fallowing frequency, enabling increased crop
production over time [78]. These savings often counter-
balance yield penalties in more marginal areas [27]. In
other cases, conservation tillage can have unclear or
negative effects. Improved soil carbon storage and
reduced NO2 emissions are sometimes heralded as a
benefit of conservation tillage, but study findings are
mixed [4, 16, 28, 30]. Similarly, although conservation
tillage can reduce surface runoff, accumulated P in the
soil can result in high P runoff during storm events that
impacts downstreamwater quality [79]. Ultimately, con-
servation tillage systems reduce soil erosion, often
returning soil loss rates to background levels on par with
natural soil generation [2].

Our assessment compares on-the-ground, pro-
duction-scale fields at a systems level. It is generally
understood that a suite of management changes are
associated with reduced tillage. We provide evidence
that conservation tillage systems are capable of achiev-
ing modest yield improvements, but we are unable to
attribute yield gains to specific components of any
management regime. For this reason, complementary
large-scale or quasi-natural experiments with detailed
management data would be useful to characterize best
management practices. Our results support soil con-
servation practices by demonstrating that conserva-
tion tillage can be used with minimal and typically
positive yield impacts under what are likely a set of
optimizedmanagement practices.
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